36 research outputs found

    Connected and Automated Vehicles in Urban Transportation Cyber-Physical Systems

    Get PDF
    Understanding the components of Transportation Cyber-Physical Systems (TCPS), and inter-relation and interactions among these components are key factors to leverage the full potentials of Connected and Automated Vehicles (CAVs). In a connected environment, CAVs can communicate with other components of TCPS, which include other CAVs, other connected road users, and digital infrastructure. Deploying supporting infrastructure for TCPS, and developing and testing CAV-specific applications in a TCPS environment are mandatory to achieve the CAV potentials. This dissertation specifically focuses on the study of current TCPS infrastructure (Part 1), and the development and verification of CAV applications for an urban TCPS environment (Part 2). Among the TCPS components, digital infrastructure bears sheer importance as without connected infrastructure, the Vehicle-to-Infrastructure (V2I) applications cannot be implemented. While focusing on the V2I applications in Part 1, this dissertation evaluates the current digital roadway infrastructure status. The dissertation presents a set of recommendations, based on a review of current practices and future needs. In Part 2, To synergize the digital infrastructure deployment with CAV deployments, two V2I applications are developed for CAVs for an urban TCPS environment. At first, a real-time adaptive traffic signal control algorithm is developed, which utilizes CAV data to compute the signal timing parameters for an urban arterial in the near-congested traffic condition. The analysis reveals that the CAV-based adaptive signal control provides operational benefits to both CVs and non-CVs with limited data from 5% CVs, with 5.6% average speed increase, and 66.7% and 32.4% average maximum queue length and stopped delay reduction, respectively, on a corridor compared to the actuated coordinated scenario. The second application includes the development of a situation-aware left-turning CAV controller module, which optimizes CAV speed based on the follower driver\u27s aggressiveness. Existing autonomous vehicle controllers do not consider the surrounding driver\u27s behavior, which may lead to road rage, and rear-end crashes. The analysis shows that the average travel time reduction for the scenarios with 600, 800 and 1000 veh/hr/lane opposite traffic stream are 61%, 23%, and 41%, respectively, for the follower vehicles, if the follower driver\u27s behavior is considered by CAVs

    Situation-Aware Left-Turning Connected and Automated Vehicle Operation at Signalized Intersections

    Get PDF
    One challenging aspect of the Connected and Automated Vehicle (CAV) operation in mixed traffic is the development of a situation-awareness module for CAVs. While operating on public roads, CAVs need to assess their surroundings, especially the intentions of non-CAVs. Generally, CAVs demonstrate a defensive driving behavior, and CAVs expect other non-autonomous entities on the road will follow the traffic rules or common driving behavior. However, the presence of aggressive human drivers in the surrounding environment, who may not follow traffic rules and behave abruptly, can lead to serious safety consequences. In this paper, we have addressed the CAV and non-CAV interaction by evaluating a situation-awareness module for left-turning CAV operations in an urban area. Existing literature does not consider the intent of the following vehicle for a CAVs left-turning movement, and existing CAV controllers do not assess the following non-CAVs intents. Based on our simulation study, the situation-aware CAV controller module reduces up to 27% of the abrupt braking of the following non-CAVs for scenarios with different opposing through movement compared to the base scenario with the autonomous vehicle, without considering the following vehicles intent. The analysis shows that the average travel time reductions for the opposite through traffic volumes of 600, 800, and 1000 vehicle/hour/lane are 58%, 52%, and 62%, respectively, for the aggressive human driver following the CAV if the following vehicles intent is considered by a CAV in making a left turn at an intersection

    Synergizing Roadway Infrastructure Investment with Digital Infrastructure for Infrastructure-Based Connected Vehicle Applications: Review of Current Status and Future Directions

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The safety, mobility, environmental and economic benefits of Connected and Autonomous Vehicles (CAVs) are potentially dramatic. However, realization of these benefits largely hinges on the timely upgrading of the existing transportation system. CAVs must be enabled to send and receive data to and from other vehicles and drivers (V2V communication) and to and from infrastructure (V2I communication). Further, infrastructure and the transportation agencies that manage it must be able to collect, process, distribute and archive these data quickly, reliably, and securely. This paper focuses on current digital roadway infrastructure initiatives and highlights the importance of including digital infrastructure investment alongside more traditional infrastructure investment to keep up with the auto industry's push towards this real time communication and data processing capability. Agencies responsible for transportation infrastructure construction and management must collaborate, establishing national and international platforms to guide the planning, deployment and management of digital infrastructure in their jurisdictions. This will help create standardized interoperable national and international systems so that CAV technology is not deployed in a haphazard and uncoordinated manner

    Development and Performance Evaluation of a Connected Vehicle Application Development Platform (CVDeP)

    Get PDF
    Connected vehicle (CV) application developers need a development platform to build, test and debug real-world CV applications, such as safety, mobility, and environmental applications, in edge-centric cyber-physical systems. Our study objective is to develop and evaluate a scalable and secure CV application development platform (CVDeP) that enables application developers to build, test and debug CV applications in realtime. CVDeP ensures that the functional requirements of the CV applications meet the corresponding requirements imposed by the specific applications. We evaluated the efficacy of CVDeP using two CV applications (one safety and one mobility application) and validated them through a field experiment at the Clemson University Connected Vehicle Testbed (CU-CVT). Analyses prove the efficacy of CVDeP, which satisfies the functional requirements (i.e., latency and throughput) of a CV application while maintaining scalability and security of the platform and applications

    Multi-class twitter data categorization and geocoding with a novel computing framework

    Get PDF
    This study details the progress in transportation data analysis with a novel computing framework in keeping with the continuous evolution of the computing technology. The computing framework combines the Labeled Latent Dirichlet Allocation (L-LDA)-incorporated Support Vector Machine (SVM) classifier with the supporting computing strategy on publicly available Twitter data in determining transportation-related events to provide reliable information to travelers. The analytical approach includes analyzing tweets using text classification and geocoding locations based on string similarity. A case study conducted for the New York City and its surrounding areas demonstrates the feasibility of the analytical approach. Approximately 700,010 tweets are analyzed to extract relevant transportation-related information for one week. The SVM classifier achieves \u3e 85% accuracy in identifying transportation-related tweets from structured data. To further categorize the transportation-related tweets into sub-classes: incident, congestion, construction, special events, and other events, three supervised classifiers are used: L-LDA, SVM, and L-LDA incorporated SVM. Findings from this study demonstrate that the analytical framework, which uses the L-LDA incorporated SVM, can classify roadway transportation-related data from Twitter with over 98.3% accuracy, which is significantly higher than the accuracies achieved by standalone L-LDA and SVM
    corecore